博客
关于我
633. 平方数之和
阅读量:791 次
发布时间:2019-03-25

本文共 754 字,大约阅读时间需要 2 分钟。

双指针剪枝法判断是否存在两个平方数之和等于给定值

在解决数学问题时,一种高效的算法叫做双指针剪枝法,它通过控制两个指针的增长和减少来查找合适的解。以下将以具体案例为例,详细介绍该方法。

非常著名的数学问题之一是:给定一个整数c,判断是否可以表示为两个平方数之和,即是否存在两个整数a和b,使得a² + b² = c。这个问题的解决方法可以通过双指针剪枝算法高效地实现。

双指针剪枝法采用两个指针l和r来分别控制a和b的取值范围。初始时,将l的值设在0,r的值设为√c的整数部分。使用long long类型表示l和r的值,以防止在相乘时出现整数溢出的问题。

算法步骤如下:

  • 初始化两个指针l和r:l = 0r = (int)sqrt(c)

  • 进入循环:while (l <= r) {// 计算当前对应的和sumsum = ll + rrif (sum == c) => 符合条件,返回trueelse if (sum < c) => 意味着需要增加l的值else => 需要下降r的值}

  • 循环结束后,如果没有找到满足条件的解,返回false。

  • 对于特殊情况c=2的案例,l和r的初值为0和1。经过计算:

    • 当l=1,r=1时,sum = 1 + 1 = 2,符合条件,返回true。

    该方法通过剪枝避免了不必要的循环遍历,特别适用于大的c值检查时,保证了高效性和准确性。

    需要注意的是,双指针l和r完全可以相等,像上述c=2的案例一样,这中的l和r相等都是1,仍能得到正确结果。该算法创新的剪枝策略,使得时间复杂度在大多数情况下降至O(sqrt(c)),大大比线性搜索更高效。

    总结来说,双指针剪枝方法是一种聪明的算法优化策略,在面对数学问题时,它能够通过观察和推理,方法地缩小解题范围,从而大大提高了计算效率。

    转载地址:http://zpjuk.baihongyu.com/

    你可能感兴趣的文章
    NIS服务器的配置过程
    查看>>
    NIS认证管理域中的用户
    查看>>
    Nitrux 3.8 发布!性能全面提升,带来非凡体验
    查看>>
    NiuShop开源商城系统 SQL注入漏洞复现
    查看>>
    NI笔试——大数加法
    查看>>
    NLog 自定义字段 写入 oracle
    查看>>
    NLog类库使用探索——详解配置
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    NLP 模型中的偏差和公平性检测
    查看>>
    Vue3.0 性能提升主要是通过哪几方面体现的?
    查看>>
    NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
    查看>>
    NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
    查看>>
    NLP、CV 很难入门?IBM 数据科学家带你梳理
    查看>>
    NLP三大特征抽取器:CNN、RNN与Transformer全面解析
    查看>>
    NLP入门(六)pyltp的介绍与使用
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP度量指标BELU真的完美么?
    查看>>
    NLP的不同研究领域和最新发展的概述
    查看>>
    NLP的神经网络训练的新模式
    查看>>
    NLP采用Bert进行简单文本情感分类
    查看>>